# An Unexpected Cyclisation of an Olefinic ${ }_{\mathbf{i}}^{\mathbf{8}}$ Epoxy-ketone 

By Edward G. Scovell and James K. Sutherland*

(Chemistry Department, The University, Manchester M13 9PL)

Summary Reaction of the epoxy-olefin (1) with Lewis acids gave the bicyclo[3.3.1]nonane derivative (2), possibly by an 'ene' reaction.

Following our previous successful epoxy-olefin ${ }^{1}$ and epoxy-acetylene ${ }^{2}$ cyclisations with compounds of the general type (1) we attempted to induce five-membered

(1)

(2)

(3)

(4)

(5)

(A)

(12)

(13)
s)] whose spectroscopic properties were in accord with the expected cyclisation product (3), with isopropenyl group at position ${ }^{*}$ ). However, degradation established that this was not so. Reduction of (3) to the diol $\left(\mathrm{NaBH}_{4}\right)$ followed by $\mathrm{HIO}_{4}$ oxidation gave the keto-aldehyde $\left[\tau\left(\mathrm{CDCl}_{3}\right) 0.2\right.$ $(1 \mathrm{H}, \mathrm{t}), 5 \cdot 0(1 \mathrm{H}, \mathrm{m}), 5 \cdot 1(1 \mathrm{H}, \mathrm{m}), 7 \cdot 12(1 \mathrm{H}, \mathrm{dd}), 8 \cdot 2(3 \mathrm{H}$, br. s), and $8.96(3 \mathrm{H}, \mathrm{s})$; $\left.\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1735 \mathrm{~cm}^{-1}\right]$ which was oxidized with Jones's reagent to the acid (4) [ $\nu_{\max }\left(\mathrm{CHCl}_{3}\right)$ 1740 and $1715 \mathrm{~cm}^{-1} ; \tau\left(\mathrm{CDCl}_{3}\right) 5 \cdot 1(1 \mathrm{H}, \mathrm{m}), 5 \cdot 2(\mathrm{lH}, \mathrm{m})$, $7 \cdot 16(1 \mathrm{H}, \mathrm{dd}), 8 \cdot 27(3 \mathrm{H}, \mathrm{br}$. s), and $9 \cdot 0(3 \mathrm{H}, \mathrm{s})]$. Acid or base converted (4) into (5) $\left[\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1720\right.$ and 1670
$\mathrm{cm}^{-1} ; \boldsymbol{\tau}\left(\mathrm{CDCl}_{3}\right) 9 \cdot 0(3 \mathrm{H}, \mathrm{s}), 8 \cdot 17(3 \mathrm{H}, \mathrm{s})$, and $7.78(3 \mathrm{H}, \mathrm{s})$, $\lambda_{\max }$ (EtOH) $\left.253 \mathrm{~nm}(\epsilon 9900)\right]$. These data establish part structure (A) for (5), which was confirmed by $\mathrm{NaBH}_{4}$ reduction (acid work-up) to (6) $\left[\tau\left(\mathrm{CDCl}_{3}\right) 8.67(6 \mathrm{H}, \mathrm{s})\right.$ and $4 \cdot 7(1 \mathrm{H}$, $\mathrm{t}, J 1.2 \mathrm{~Hz}$ ). Some clue as to how (3) is formed came from the observation that $(2)\left[\tau\left(\mathrm{CDCl}_{3}\right) 8.88(3 \mathrm{H}, \mathrm{s}), 8.25(3 \mathrm{H}, \mathrm{s})\right.$, $5.41(1 \mathrm{H}, \mathrm{s})$, and $5.20(1 \mathrm{H}, \mathrm{s})]$ is a kinetic product of reaction and can be converted into (3) under the conditions of reaction, or by treatment with NaOH . The structure (2) is secured by the following degradations. Reduction with $\mathrm{NaBH}_{4}$ gave a mixture of diols which on $\mathrm{HIO}_{4}$ oxidation yielded (7) $\left[\nu_{\max }\left(\mathrm{CHCl}_{3}\right) \quad 1740\right.$ and $1705 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right)$ $8.93(3 \mathrm{H}, \mathrm{s}), 8.25(3 \mathrm{H}, \mathrm{s}), 5 \cdot 14(1 \mathrm{H}, \mathrm{s}), 5 \cdot 06(1 \mathrm{H}, \mathrm{s})$, and 0.6 $(1 \mathrm{H}, \mathrm{s})]$. Jones's oxidation of (7) yielded (8) $\left[\tau\left(\mathrm{CDCl}_{3}\right)\right.$ $8.78(3 \mathrm{H}, \mathrm{s}), 8.25(3 \mathrm{H}, \mathrm{s}), 5 \cdot 11(1 \mathrm{H}, \mathrm{s})$, and $5.04(1 \mathrm{H}, \mathrm{s})]$, which underwent acid-catalysed Claisen condensation with toluene- $p$-sulphonic acid in benzene forming (9) [ $\lambda_{\max }$ $(\mathrm{EtOH}) 253 \mathrm{~nm}(\epsilon 5500)$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1740$ and $1685 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CDCl}_{3}\right) 8.85(3 \mathrm{H}, \mathrm{s}), 8.32(3 \mathrm{H}, \mathrm{s})$, and $\left.8.15(3 \mathrm{H}, \mathrm{s})\right]$. The
diketone (9) was smoothly hydrolysed to (10) $\left[\lambda_{\text {max }}(\mathrm{EtOH})\right.$ $\left.252 \mathrm{~nm}(\epsilon 1750) ; \tau\left(\mathrm{CDCl}_{3}\right) 8 \cdot 8(3 \mathrm{H}, \mathrm{s}), 8 \cdot 3(6 \mathrm{H}, \mathrm{s})\right]$ with NaOH . The stereochemistry of (2) was established by conversion of the corresponding diols in part into the ether (11) $\left[\mathrm{Hg}(\mathrm{OAC})_{2}-\mathrm{H}_{2} \mathrm{O}\right.$ then $\left.\mathrm{NaBH}_{4}\right)$.
It is clear that (2) cannot be a direct product of cyclisation, but a likely precursor is (13) from which it can be formed by the well known epoxide-to-ketone transformation. Compound (13) could be formed from (1) by a Prins ${ }^{3}$ or 'ene' type reaction ${ }^{4}$ as in (12). Such a pathway could well be of lower energy than one forming a cyclopentylmethyl cation which is notoriously prone to rearrangement ${ }^{5}$ when fused to other rings, e.g. backbone rearrangement of steroids. This would, of course, support the formation of (13) by a Lewis acid-catalysed 'ene' reaction rather than by a Prins which involves the intermediacy of just such a cation.

We thank the S.R.C. for support.
(Received, 9th March 1978; Com. 254.)
${ }^{1}$ E. Huq, M. Mellor, E. G. Scovell, and J. K. Sutherland, J.C.S. Chem. Comm., 1978, 526.
${ }^{2}$ M. Mellor, A. Santos, E. G. Scovell, and J. K. Sutherland, J.C.S. Chem. Comm., preceding communication.
${ }^{3}$ E. Arundale and L. A. Mikeska, Chem. Rev., 1952, 51, 505.
${ }^{4}$ G. B. Gill and B. Wallace, J.C.S. Chem. Comm., 1977, 380.
${ }^{5}$ K. A. Parker and W. S. Johnson, J. Amer. Chem. Soc., 1974, 96, 2556.

